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Abstract

In this study, we determined the LDso (50% lethal dose) for cell death, and the EDsp (50% of cell population staining
positive) for propidium (Pr) iodide uptake, and phosphatidylserine (PS) externalization for several commonly studied cell
lines (Hela, Jurkat, U937, CHO-K1, and GH3) exposed to 10-ns electric pulses (EP). We found that the LDy, varied
substantially across the cell lines studied, increasing from 51 J/g for Jurkat to 1861 J/g for Hela. PS externalized at doses
equal or lower than that required for death in all cell lines ranging from 51 J/g in Jurkat, to 199 J/g in CHO-K1. Pr uptake
occurred at doses lower than required for death in three of the cell lines: 656 J/g for CHO-K1, 634 J/g for Hela, and 142 J/g
for GH3. Both Jurkat and U937 had a LDs, lower than the EDsq for Pr uptake at 780 J/g and 1274 J/g, respectively. The
mechanism responsible for these differences was explored by evaluating cell size, calcium concentration in the exposure
medium, and effect of trypsin treatment prior to exposure. None of the studied parameters correlated with the observed
results suggesting that cellular susceptibility to injury and death by 10-ns EP was largely determined by cell physiology. In
contrast to previous studies, our findings suggest that permeabilization of internal membranes may not necessarily be
responsible for cell death by 10-ns EP. Additionally, a mixture of Jurkat and Hela cells was exposed to 10-ns EP at a dose of
280 J/g. Death was observed only in Jurkat cells suggesting that 10-ns EP may selectively kill cells within a heterogeneous
tissue.
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Introduction

Short-duration, high voltage electric pulscs (micro and mullisec-
ond duration) cause defects in the plasma membrane of cells
[1,2,3]. These membrane defects can allow the transient passage
of impermeable molecules by direct diffusion through aqueous
pores or by clectrophoresis. This technique has been used in
conjunction with toxic agents (c.g. bleomycin) to kill specific cells
and tssue, a technique called electrochemotherapy [4,5,6,7].
Electric pulses can also cause irreversible membrane breakdown
resulting in cell death, termed irreversible electroporation (IE)
[8,9,10,11,12,13]. Killing of unwanted cells and tissue by IE and
clectrochemotherapy has shown to be effective in the treatment of
cancers [4,6,9,11,12,14]. The use of ultrashort electric pulses
(USEP) has emerged as a novel modality to kill cells based on
theoretical and empirical results showing that USEP can cause
intracellular membrane poration. Intraccllular poration has been
hypothesized to lead to apoptotic ccll death resulting in an ordered
removal of tissuc by the body [15,16,17,18,19,20]. In wvive
experiments have also shown USEP to be a successful treatment
for tumors [21,22,23]. USEP, because of their innate high

@ PLoS ONE | www.plosone.org

frequency componcnts, also have the potential of being delivered
remotely by close-range antenna highlighting the importance of
studying USEP-induced bioeffects [24,25,26,27].

Despite thcoretical predictions of intracellular poration and
empirical results, it remains unclear whether the plasma
membrane plays a role in triggering cell death following USEP
exposure. Therefore, the aim of this rescarch was to mecasure cell
survival in relation to disruptions in the plasma membrane across
scveral commonly studied cell lines. Previous studics have shown
that different cell lines (HeLa, Jurkat, U937, HL-60, etc.) requirc
different intensities of USEP exposures to cause death [28,29,30].
Unfortunately, the exposure parameters (pulse amplitude, dura-
tion, repetition rate, and number) and the cellular environment
{exposure buffer) varied considerably across these studies resulting
in an unclear understanding of the USEP cxposure requirements
for cellular death across multiple cell lines. However, it is believed
that morphological and physiological differences between various
cell types do influence susceptibility to injury and death by
ultrashort electrical stimuli [28]. In previous work, we demon-
strated that the dose required to kill Jurkat cells is substantially less
than that required to kill U937 cclls when exposed to 10-ns EP
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[29,31]. In addition, we showed that this dose-dependent
susceptibility appears only when the pulse duration is short
(<300 ns) [29].

Recent work utilizing patch clamp and fluorescent microscopy
has provided sufficient evidence that the plasma membranc is not
spared by USEP [29,32,33,34,35,36,37]. Whole-ccll conductance
measurements in multiple cell types (CHO-K1, GH3, Jurkat, and
HeLa) have shown significant changes at low exposure levels
suggesting formation of long-lasting nanopores (minutes) in the
plasma membrane. Results have shown a dose-dcpendence of
nanopore formation for single and multiple pulse cxposures at
multiple pulse widths [36]. In agreement with patch clamp results,
previous groups studying death caused by USEP have observed
fast externalization (within minutes) of PS residues without uptake
of propidium (Pr) iodide suggesting changes in membrane
organization without large pore formation [20,29,34,38,39]. This
work shows that USEP can have profound effect on the plasma
membrane and that internal membrane permeabilization unlikely
exists independently. A clear connection between cffects on the
plasma membrane of cells exposed to ultrashort pulses and cell
death remains unproven. Without such a connection it will be
impossible to properly guide future work aimed at determining the
mechanism(s) that cells utilize to repair their membranes or die
following USEP exposure and whether it is truly mechanistically
different than death caused by longer duration pulses.

Materials and Methods

Cell Lines and Propagation

Experiments were performed in five cell lines, Jurkat clone E6-
I (human T-lymphocytes), U-937 (human monocytes), GH3 (rat
pituitary), CHO-K1 (hamster ovarian epithelial), and Hela
(human cervical epithelial). The cells were obtained from ATCC
(Manassas, VA) and propagated at 37°C with 5% COg at 95%
humidity in air. Different media were used for culturing each cell
type as per ATCC guidelines. The media and its components
were purchased from ATCC and supplemented with 1%
penicillin/streptomycin (ATCC). It was critical that the cell lines
be exposed to 10-ns EP in a comparable way requiring the
temporary suspension of adherent cultures; Hela, GH3, and
CHO-K1 cells were harvested during the logarithmic growth
phase by rinsing the cells in 0.25% trypsin (ATCC) for up to 5
minutes, pelleted by centrifugation, counted on a ZI particle
counter (Beckman Coultier, Miami, FL), and resuspended at
1200 cells/ul in their respective growth medium. Jurkat and
U937 cells were harvested during the logarithmic growth phase,
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pelleted by centrifugation, counted on the Z1 particle counter,
and resuspended at 1200 cells/ul in their respective growth
medium.

Exposure to 10-ns Pulses

The 10-ns exposure system has been described previously
[29,31,40]. In brief, to produce a 10-ns EP, a Blumlein line circuit
was charged from a high-voltage DC power supply until a
breakdown voltage was reached across a spark gap in a pressurized
switch chamber. The breakdown voltage (and, consequently, the
voltage of USEP delivered to the sample) was varied from 15 to
40 kV by changing the pressure of SFg gas in the switch chamber.
The pulser control system included a programmable gas regulator,
pulse counter, and GPIB outputs for communication with the high
voltage power supply and digital high-speed oscilloscope
(TDS3052B, Tektronix, Wilsonville, OR). The control system
communicated with a PC using a specialized program written in
LabVIEW® (National Instruments, Austin, TX).

For exposure, cells suspended in complete growth medium were
dispensced into conventional electroporation cuvettes with 1-mm
(150-uL. volume) or 2-mm (400-uL volume) gap between the
clectrodes (BioSmith Biotech, San Diego, CA). The amplitude,
number of pulses, and pulse shape were recorded for every
exposure using a custom built pulsing controller and oscilloscope.
The electroporation cuvettes were exposcd to USEP at a room
temperature (21-23°C). In cach series of experiments, different EP
treatments, including sham exposure, were alternated in a random
sequence. Once filled with the cell suspension, cuvettes were
subjected to USEP treatment within 20 minutes. All exposures
were carried out at a pulse repetition frequency range of 1.7—
2.2 Hz,

Dosimetry

Table | displays the exposure parameters used in the
experimentation and the calculated dose delivered to the cuvette.
Due to the variability in the pulsc amplitude generated from the
spark gap, electric fields were measured for every pulse and the
average value was used to calculate the dose [31]. In this table, we
show the number of pulses (10, 30, 100, 300, 1000) and average
electric ficld amplitudes (65, 105, 150, 285 kV/cm) used in the
exposures. The resultant dose was calculated as in previous
publications [29,31]. The individual column on the right shows
the average dose as calculated by combining doses of similar
magnitude 1nto a single data point. This averaging was performed
to simplify the presentation of cell survival data on the logarithmic
scale.

Table 1. Exposure parameters used in this study and the calculated dose delivered to the cuvette.

Amplitude 65 kV/cm 105 kV/ecm 150 kV/ecm 285 kV/em Average Dose (J/g)
Pulse Number 12
10 5 14 28 101 40
30 16 M 84 302 120
100 52 137 279 1007 379
300 157 410 837 3022 1070
1000 524 1367 2790 10072 2906
10072

doi:10.1371/journal.pone.0015642.t001

@ PLoS ONE | www.plosone.org

The exposure parameters are shown in the top row and left column of the table. The dose calculated from these exposures is presented in corresponding cells. The
average dose, generated by combining doses at a similar magnitude, is presented in the right-most column.
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Cell Survival

To obtain survival data for the 5 different cell cultures at
24 hours post exposure, an MTT Cell Proliferation Assay (3-(4,5-
Dimcthylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, ATCC,
Manassas, VA) was used. Exposcd cells were ascptically aliquoted
into a 96-well plate, in triplicates at 50x 107 cells/well, and diluted
to 100 pl with fresh growth medium. The plate was incubated at
37°C, with 5% COy in air. At 22 hours after EP treatment, 10 ul
of MTT reagent was added to cach well, and incubation
continued for 2 hours. Formed blue formazan crystals were
dissolved by adding the solubilization buffer (100 uL/well) and
placing the plate on an orbital shaker overnight. Absorbance at
570 nm was read the next day using a Synergy HT microplate
reader (BioTEK, Winooski, VT), and the readings in EP-exposed
samples were normalized to parallel controls.

Flow Cytometry and Confocal Microscopy

Upon exposure to 10-ns EP, aliquots of the cellular suspension
were added to a tube containing full medium, 0.1% Annexin V-
FITC (BD Pharmingen, San Diego, CA), and 0.02% propidium
lodide (Sigma-Aldrich, St. Louis, MO). The cells were incubated
for 15 minutes at room temperature, in amber tubes, in the
presence of the dyes to allow for uptake of Pr and adequate
binding of Annexin V-FITC [18,41,42]. Following this incubation
period, the cells were quickly resuspended by mild vortexing and
analyzed with an Accuri C6 Flow Cytometer (Accuri Cytometers,
Inc., Ann Arbor, MI). Samples were run in triplicate at a set
analysis volume (75 uL). Sham-exposed samples and those treated
with 0.005% digitonin were used as ncgative and positive controls,
respectively. Flow analysis was performed by gating the cellular
population and appropriately compensating the fluorescent
overlap between Annexin V-FITC and Pr channels. Percentage
of positive fluorescent expression in the gated population was
measured by applying a threshold to the sham population,
allowing for approximately 5-10% of the cells to appear as
positive. This binary analysis method was used to cnsurc highest
possible sensitivity for membrane permeabilization. The expres-
sion of PS was measured following exposure of cach cell type to
100, 10-ns pulses at four distinct E-field intensities (35, 60, 105,
150 kV/cm). The uptake of Pr was measured by exposing cach
cell population to a high E-field (200 kV/cm for Jurkat, GH3 and
285 kV/em for U937, HeLa, CHO-KI) at increasing pulse
numbers (10, 30, 100, 300). Survival data was processed and
plotted using Grapher® software (Golden Software, Golden,
Colorado). Flow cytometry results were processed in C6 software
(Accuri Cytometers, Inc., Ann Arbor, MI) and FCSExpress
software (DeNovo Software, Los Angeles, CA). Final analysis
and presentation of flow cytometry results were also generated
using Grapher®.

Confocal images of cells were taken following USEP exposure to
validate flow cytometry measurements. Cells exposed to either 100
pulses at 105 kV/cm, or 0.005% digitonin, or sham-exposed, were
stained similarly to the above protocol for flow cytometry.
Following the labeling procedurcs, cells were placed into a dish
containing a glass bottom coverslip (MatTek Corp, Ashland, MA)
and placed on a Zeiss 710 LSM microscope (Zeiss Microlmaging,
Thornwood, NY). Fluorescent images of Jurkat were captured
simultancously by two PMT’s, set for Pr (=590 nm) and FITC
(500-550 nm) emission wavelength ranges, using 488 nm argon
laser cxcitation through a 20X, 0.8 NA objcctive. Brightfield
images were also captured using the 488 nm argon lascr and the
transmission PMT channcl. Images were processed using Zen®
software (Zeiss Microlmaging, Thornwood, NY).

@ PLoS ONE | www.plosone.org
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Calcium Measurement and Calcium-doped Exposure

Calcium concentration of cach complete medium was measured
using a QuantiChrom™ Calcium Assay Kit (BioAssay Systems,
Hayward, CA). The kit was used according to the manufacturer’s
protocol and the samples were read on the BioTek Synergy HT
(BioTek, Winooski, VT) at 612 nm. Using a standard curve of
known calcium dilutions, the concentration of calcium for cach
cell line’s complcte medium was determined. To investigate the
impact of additional calcium within the exposure medium,
calcium chloride was added to Jurkat media to final calcium
concentrations of 2.1 mM or 5.1 mM. Jurkat cells were placed in
the calcium-doped medium and cxposed to increasing pulse
numbers at 60 kV/cm. Following cxposure the MTT assay was
run as previously described.

Effect of Trypsin on Cell Survival

In order to expose adherent cells within an electroporation
cuvette, trypsin treatment was unavoidable. To determine whether
trypsin treatment has an impact on cell survival, Jurkat cells were
exposed to trypsin to mimic an equivalent cxperimental protocol
as employed for the adherent cell lines. To do this, Jurkat cells
were rinsed in a PBS (ATCC) solution and suspended in a 5%
trypsin solution. After 5 minutes, cell medium was added to the
flask and the cells were allowed to rest for 30 minutes. Cells were
exposed to 60 k V/cem using 10, 30, 100, or 300 pulses. Following
exposure, the cells were placed in a well plate and allowed to
recover over a 24-hour period. MTT assay was used to asscss
cellular survival.

Simultaneous Exposure of Jurkat and Hela Cell Lines

It was unclcar whether the sensitivity observed in single cell
exposures would hold truc in a heterogeneous sample. To study
this, Hela and Jurkat cells were counted using a Z1 particle
counter (Beckman Coultier, Miami, FL) and mixed at a 50% cell
ratio in complete growth medium (RPMI 1640 mcdia with 10%
FBS and 1% pen/strep). The heterogeneous mixture was allowed
to grow for 96 hours to eliminate any artifacts brought on by
sudden change of mcdia for Hela cells. Prior to exposure, the
supernatant containing Jurkat cells was removed and trypsin was
used to isolate Hela cells. The two populations were then
recounted and remixed within an clectroporation cuvette at 50%
cell ratio for exposure. Cells were exposed to 100 pulses at 0 and
150 kV/cem. The exposed populations were plated and allowed to
grow for 24 hours in RPMI 1640 medium. Following that growth
period Jurkat cells werc rcmoved with the supernatant and
separate MTT assays were run for both cell lines.

Results and Discussion

Cell Viability

Figure 1 shows the cell survival recorded by MTT for Jurkat
and Hela cells exposed to increasing pulse numbers at 60, 105,
150, and 285 kV/cm. Jurkat cells appear to be more sensitive to
the cffects of 10-ns pulse exposure than Helaa cells at all exposure
levels. Increased death with increasing pulse number or pulsc
amplitude 1s seen in both cell lines. As in the previous work, a
resistive tall remains within the populations; this is due either to
non-uniform sample exposure or to a subpopulation of cells that
arc abnormally resistant [29]. In contrast to Jurkat cclls, Hela
cells respond only to the highest electric field and show an
increasing effect with increasing pulsc number.

In Figure 2, we show the resulting cell survival data for all 5 cell
types as related to the average dose calculated in Table 1. A
logarithmic fit was applied to the data to calculate the point at
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Figure 1. Jurkat and Hela survival decreases with increasing electric field amplitude and pulse number. Cell survival curves for Jurkat and
Hela cells exposed to 60, 105, 150, and 285 kV/cm. The data shows that the number of cells that survive post-exposure decreases with increasing electric
field and pulse number. For all exposures, Jurkat cells are more sensitive than Hela cells. Data points represent the average survival. (mean +/—

s.e, n=3-5).
doi:10.1371/journal.pone.0015642.g001

which 50% of the cells die (LD3q). Hela, the most resistant cell
line tested, had an LD of 1861 J/g whereas Jurkat cells, the most
sensitive cell line, had an LDsq of 51 J/g. This represents a nearly
40 times increase in dose needed to kill one cell type versus
another. The slopes of the dose response curves for each cell line
are quite similar suggesting that the mechanism responsible for cell
death may be the same. Shifts in the dose response curve suggest
that acute membrane and internal cellular damage may depend on
cellular physiology and/or different cell lines may be better able to
repair damage by active and passive mechanisms following 10-ns
EP exposure.

Measuring Plasma Membrane Disruption by Flow
Cytometry

To better understand the mechanism responsible for cellular
death across the different cell lines, we chose to focus on the
plasma membrane. It is unclear whether subde membrane
disruption is, in itself, a stressful enough event to causc ccll death.

@ PLoS ONE | www.plosone.org

To investigate subtle changes induced in the plasma membrane,
we chose to monitor the externalization of phosphatidylserine (PS)
molecules on the outer leaflet of the plasma membrane by utilizing
FITC-labeled Annexin V dye. The chain of events leading to the
externalization of PS following USEP exposure remains unknown
with hypotheses proposing lateral diffusion of PS through
nanopores within the membrane [34] and calcium influx-induced
activation of scramblase [43]. Despite the ambiguity of the
mechanism ultimately causing externalization of PS, it remains a
reliable marker of membrane disruption known to occur at
thresholds well below that for propidium ion uptake.

Figure 3 shows raw flow cytometry data from Jurkat cells. The
forward and side scatter density plots of the pure cell population
along with the compensated reading from both fluorescent
channels 1s shown (for cells exposed to 105 kV/cm, 100 pulses,
0.005% digitonin, or sham-cxposed). The USEP-exposed cells
show a substantial portion of the population expressing PS on the
plasma membrane surface, while remaining impermecable to Pr. In
contrast, digitonin causes plasma membrane degradation allowing
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100 m '

N N o T TR
80 T %
c\\i \\\ \\ ¥ ‘\\\\L 3 .
s \ N b i R
g o SR X
; \\ \\\ \\ )‘ g
D 40 % YR
= S B o)
S | @ JURKAT (51J4ig) &, T WY TR T
20l ¥ GH3  (185Jig) b e
m U937 (534 J/g) . S, BN a
a CHO (940 Jig) “ TN
0- @ HELA (1861 J/) R
0 10 100 1000 10000

Absorbed Dose (J/g)

Figure 2. Cell survival as determined by dose in several cell
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control, n=3-5) are plotted against the dose delivered to the cuvette.
Logarithmic fit lines (dashed) reveal significant differences between cell
populations. LDsg values (J/g) are displayed in the legend for each
population as calculated using the logarithmic fit.
doi:10.1371/journal.pone.0015642.g002
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the influx of Pr and positive staining for PS. Flow cytometry data
were obtained for both fluorescent dyes using a threshold based on
the sham-exposed population. Figure 4 shows laser scanning
confocal microscopy images for cach fluorescent dye and a
corresponding brightfield image. The first column of images shows
minimal positive expression of Annexin V-FITC and Pr occurs in
the sham population. The second column of images show that cells
exposed to 100, 10-ns EPs at 105 kV/cm positively express
Anncxin V-FITC with minimal Pr fluorescence. In the third
column, the positive control, 0.005% digitonin, shows positive
expression of both dyes. While these images can only show a small
subset of the exposed population, they agree wecll with flow
cytometry results presented in Figure 3.

Figure 5 shows the flow cytometry results for Jurkat (A,C) and
HcLa (B,D) cell lines. The USEP-exposed Jurkat (A) were positive
for PS externalization without substantial uptake of Pr, thus
agrecing with previous publications [26,39]. When compared to
HeLa (B), Jurkat appear to cxternalize PS at lower ficld strength,
suggesting that physiological differences between the cells likely
cause differences in sensitivity. This finding reinforces previous
results obtained using patch clamp technique that showed that
Hela required substantially higher electric field than Jurkat to
obtain the same measured changes in plasma membrane
conductance [37,44]. Figure 5C & D show two graphs depicting
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Figure 3. Binary determination of positive phosphatidylserine (PS) expression and propidium uptake by flow cytometry. Plots of the
forward and side scatter (top) of sham-exposed cells, and cells exposed to either 105 kV/cm USEP or 0.005% digitonin (positive control for both dyes).
Histograms of fluorescent count for Annexin V-FITC (middle) and Pl (bottom) are also shown. The sofid line represents the threshold used to
determine the percent of the cellular population that stains positive for each dye.

doi:10,1371/journal,pone,0015642.g003
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Figure 4. Confocal fluorescent images of Annexin V-FITC expression in USEP-exposed Jurkat. Images detail the fluorescent staining of
Jurkat cells following sham-exposure, exposure to 100 USEP at 105 kV/cm, and 0.005% digitonin.

doi:10.1371/journal.pone.0015642.g004

the results obtained by increasing the clectric field to 215 kV/cm
for Jurkat and 282 kV/cm for Hela and increasing the pulse
number. In both cell lines, Pr can be brought into the cell if
enough pulses are delivered. A substantial drop in cells showing PS
externalization is seen at the highest pulse numbers for Jurkat cells.
The reason for this drop is unknown, but substantial changes in
cell morphology are seen in the forward and side scatter channels
at these exposure levels (data not shown). Figure 6 shows the
resulting dose-responsc curves for PS externalization and Pr
uptake of all cell lines studied. These data show that the thresholds
for PS externalization is lower than for Pr uptake for all cell types
tested. Interestingly, the thresholds for PS appear to vary, whereas
the thresholds for Pr uptake, with the exception of GH3, appear
quitc similar.

Plasma membrane disruption versus cell death

In Figure 7, we have compared LDs to the effective doses
(EDs50) to cause 50% of cells to externalize PS and to cause 50% of
cells to uptake Pr. HelLa, GH3 and CHO-K1 become permcable
to Pr at doses that are at or below that rcquired for cell death. This
result suggests that intracellular membrane permeabilization is not
likely to be solely responsible for cell death at 10-ns duration
exposures. We conclude that the mechanism by which these cells
dic may be quite similar to that of irreversible electroporation. The
data also shows that Jurkat and U937 have LDsg’s below that of
the EDsq for Pr uptake. This result suggests that these cells either
experience much delayed Pr uptake (greater than 15 minutes post
exposure) and dic by a similar mechanism as the other cell lines or
diec by a completely diffcrent mechanism possibly related to
regulation of ion imbalance. However, we show that for all ccll
lines, the dose required for death always excceds that for PS
externalization. These results do in fact show, as seen in Figure 3,
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that the dose delivered by changing the amplitude or number of
10-ns pulses will have a different effect on different cell types. In
other words, these data suggest that killing of cells by 10-ns pulses
is potentially selective due to inherent differences in ccllular

physiology.

Role of Cell Size in Cell Survival

Conventional electroporation theory states the radius of the ccll
in a uniform field increases the induced steady-state transmem-
brane potential. This theory suggests that a smaller cell will be less
apt to form pores than a larger cell due to a smaller induced
transmembrane potential [2,3,45,46,47,48]. While the assump-
tions built into this theory apply specifically to micro and
millisecond duration pulses, cell size will likely impact the degree
of membrane poration for USEP exposures as well [49,50]. To
investigate this, we measured cell size across the studied cell lines
using the forward scattering channcl of the flow cytometer.
Figure 8 shows that Jurkat are the smallest followed by a nearly
even sizing of GH3, CHO-KI, and U937, with HeLa being the
largest. This result would suggest that Jurkat should be less
vulnerable to poration at any given dose than HeLa. Our flow
cytometry data suggests the opposite, with the EDsq for PS
externalization being lower for Jurkat than HeLa. Interestingly,

Jurkat have nearly the same EDj5q for Pr uptake as Hela, but a

large difference is seen in cell survival. This mirrors results by
Cemazar et al. that showed multiple cell lines exposed to 100 us
EPs, at 1 Hz, have nearly identical thresholds for Pr uptake, but
saw large differences in survival. They too noted that the smallest
cells (SA-1 sarcoma) proved the most electrosensitive, while ETA,
the largest cells proved the least electrosensitive [51]. Agarwal et al.
studied the response of single cells to ms duration EP and
determined that larger cells were easier to permeabilize, but
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Figure 5. The effect of the E-field and pulse number on USEP-induced externalization of phosphatidylserine (PS) and uptake of
propidium ions (Pr), PS and Pr fluorescent expression for Jurkat (A,C) and Hela (B,D) exposed to increasing electric fields between 0-150 kV/cm at
100 pulses per exposure and 0.005% digitonin. Externalization of PS appears in Jurkat at lower field amplitudes than in Hela. Both cell lines exposed
to digitonin stained positive for both PS and Pr. C and D show percent of Pr positive Jurkat and Hela after exposure to increasing number of pulses at
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doi:10.1371/journal.pone.0015642.g005

harder to kill as the permeabilization affected only a small portion
of the overall cell surface [48]. This theory would hold true for
Jurkat and HeLa cell lines given the data presented within this
manuscript, but the data for the remaining three cell lines of ncarly
equal size requires additional explanation. Overall, it does not
appear that cell size is the only factor dictating the degree of
membrane disruption and cell survival.

Impact of Extracellular Calcium Concentration on Cellular
Survival

The culture media used for each cell type contained different
amounts of calcium. The impact of calcium concentration on cell
dcath caused by 10-ns EP is not known and may have contributed
to the observed cell-type specific differences in survival. Figure 9A
shows the composition of calcium within each individual cell
medium measured experimentally. Specifically, Jurkat and U937
are in RPMI 1640 medium, CHO-K! and GH3 are in F12K
medium (GH3 media has 2.5% horse scrum), and Hela is in

@ PLoS ONE | www.plosone.org

EMEM medium. Although the differences in Ca concentration
between the tested media were small, we sought to better
understand the impact of calcium on cell survival. To do this,
we exposed Jurkat to USEP in media containing 0.6, 2.1, and
5.1 mM calcium (Figure 9B). Thesc experiments established that,
additional calcium has a deleterious effect on the Jurkat cell
viability (Figure 9C). Additional calcium causes a distinct left shift
of the dose-response curve with the predicted LD 54 dropping from
39 to 9.7 J/g. Assuming this calcium-dependent increase in cell
death is not cell-type specific, one would expect HeLa to have a
lower LDsq than Jurkat, however the opposite is presented in
Figure 2. Furthermore, onc could expect that if HeLa were placed
in medium containing less calcium, they may be even more
resistant to USEP-induced death. This data suggests that, while
increasing medium calcium concentration lowers the LDso in
Jurkat exposures, the differcnces in cell survival across the cell lines
are unlikcly duc to inherent differences in medium calcium
concentration.
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Impact of Trypsin Treatment on Cell Survival effect of trypsin on cell survival within our experiments by treating

The usc of trypsin to detach adherent cultures for exposure Jurkat with trypsin similarly to adherent cell lines. Figure 10 shows
could be a confounding factor affecting the responsc of adherent that Jurkat cells exposed to trypsin have nearly the same degree of
cells to USEP. Previous work has shown that cells exposed to cell death as those not exposed to it. Based on these finding, we
trypsin showed trypan blue uptake for up to 90 minutes post believe that exposure of cells to trypsin does not impact 24-hour
exposure implying cells were dead [52,53]. However, electro- survival following USEP exposure.

permeabilization of plasma membranes can be a lasting effect
taking hours to fully recover depending on the exposure conditions
and cellular environment [54,55]. We aimed to determine the
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Figure 7. Comparison of EDs, for PS externalization and
propidium uptake with LDs, in different cell lines. Error bars Figure 8. Cell size in tested cell lines as estimated by forward
represent the 95% confidence intervals, as calculated from best fit using light scattering. Bar height represents the mean of three samples of
logarithmic function (see Fig. 2 and 6). each cell line and the error bars represent the standard deviation,
doi:10.1371/journal.pone,0015642.g007 doi:10.1371/journal.pone.0015642.9g008

@ PLoS ONE | www.plosone.org 8 January 2011 | Volume 6 | Issue 1 | 15642



Cell Survival (%)

Calcium Concentration (mi)

JUREAT GH3 vay? 40 HELA

Pulse Number

25 100
J | :’: l | I
15 o0 l
'
05
0 0 0 100

Toxicity of 10ns Pulses in Multiple Cell Lines

06 mM Care 100 ° ® 0.6mM Ca~
21mMCare S + 2.9l Ca~
S1mid Case A 1 5.1 mM Car

-~ o \

£ \o

g L4 : . \

< r%

\

an . \

= ¥ \

] X

Q

— LD, =39y \
- 0. =249 \

\
) . 3 \
W, =97Jg ¢
¥ Noe

Absorbed Dose (J/g)

Figure 9. Differences in calcium concentration between different culture media are not responsible for differences in USEP-induced
cell death. A: measured calcium concentrations in cell media. B: normalized 24-hr survival of Jurkat in media with modified Ca content. Increasing
the external calcium has a negative effect on cell survival. C: a logarithmic fit to data by dose and the predicted LDsq values. (mean +/— s.e, n=3).

doi:10.1371/journal.pone.0015642.g009

Exposure of Heterogeneous Sample

Figure 11 shows the MTT results from a combined cxposure of
Hela and Jurkat cells in RPMI media. USEP exposure heavily
impacted the viability of the Jurkat cells with little or no effect on
Hela at 150 kV/cm. While these data are not meant to be a
conclusive look at the impact of USEP in heterogeneous samplcs,
they show that large differences seen in isolated cell exposures can
translate into a heterogencous cxposure system. Additionally,
HelLa and Jurkat were exposed in the same medium and similar
results to Figure 2 were scen suggesting that exposure of individual
cultures in their respective media had littte or no effect on
observed differences in survival.

Summary

This paper compared the LDs; for cellular death to the ED5q
for plasma membrane disruption, using two endpoints, across
various cell lines. We have shown that all cells studied externalize
PS at lower doses than Pr uptake. We found that some cell lines
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Figure 10. Trypsin treatment does not affect survival of USEP-
exposed Jurkat cells. Jurkat cells were exposed to 0, 30, 100, or 300,
10-ns pulses at 60 kV/cm. MTT absorbance measurements were taken
24 hours post exposure. Trypsin treatment appears to have no effect on
long-term survival of Jurkat cells. (mean +/— s.e, n=3).
doi:10.1371/journal.pone.0015642.g010
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(HeLa and CHO-KI1) appear to respond only to high doses of
USEP and that obscrved effects progressed from subtle membrane
changes (PS externalization) to Pr uptake to death. In contrast,
Jurkat and U937 had LDsq values well below the EDsy for Pr
uptake. This finding suggests that the cell lines choscn in previous
studies may have led to conclusions about specific USEP-induced
cellular effects that arc unlikely to be true for all cell types.

We also investigated the mechanism responsible for the
observed differences in cellular survival by investigating the
impact cell size, calcium concentration, and trypsinization may
have on cell survival. Wec found that increasing calcium
concentration in the external media lowered the LD;q, and that
trypsin exposure had no appreciable impact on cellular survival.
By combining Hela and Jurkat in RPMI medium, to form a
heterogencous sample, we found that we could achieve preferen-
tial kill based on the estimated dose obtained from homogenous
sample exposures. These results show the potential for USEP to
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Figure 11. Dose-dependent changes in survival are retained in
a heterogeneous cell mixture. Jurkat and Hela cells were exposed
in mixture to a 100 pulse train of 10-ns EP at 150 kV/cm, resulting in
efficient killing of Jurkat but little effect on Hela cells. (mean +/— s.g,
n=3).

doi:10.1371/journal.pone.0015642.g011
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kill cells preferentially based on inherent susceptibilities across
diverse cell lines. While this specific finding requires future work to
determine the mechanism(s) that determine cellular susceptibility
and proving its validity in a biologically relevant tissue, the
potential of this finding for biomecdical applications of USEP
cannot be ignored.
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